当前位置: 首页  >  >聚焦 > > 正文

陆军|基于电磁反演计算的超宽带无源电磁成像技术研究

2023-08-07 09:29:28    来源:面包芯语

图1超宽带无源电磁成像原理图

如图1所示是超宽带无源电磁成像系统的原理图,这是一种无源成像方法,成像距离一般都满足远场条件,我们可以通过天线的辐射功率大小来描述天线在单位立体角度内的辐射能力。这种新的成像体制与雷达成像相比不需要借助雷达回波,通过布设足够天线阵进行无源接收就能恢复原始信号。

2、超宽带无源电磁成像系统的设计

2.1超宽带无源成像系统框架

电磁成像系统采用分布式天线阵面获取空间中的电磁信息,利用信息处理算法完成电磁辐射源特征的提取,基于电磁场计算方法完成对电磁场空间分布的反演,最后将电磁场和目标三维态势绘制显示出来。其原理框图如图2所示。


(相关资料图)

图2超宽带无源电磁成像系统框图

超宽带无源电磁成像系统由信号获取、信号处理、数据处理和成像显示等几部分组成。信号获取由分布式阵面完成,将阵面天线单元进行波束合成并快速调整波束扫描角。电信号传给图像处理单元,图像处理单元把电子信号转变为数字图像信号并进行处理,使用神经网络、计算机图形学和图象处理技术进行电磁成像。

2.2超宽带无源成像工作流程

在系统基础上设计了超宽带无源电磁成像工作流程,如图2所示。

图3超宽带无源电磁成像工作流程

图2的工作流程中对于成像过程中需要的技术进行了列举,电磁感知数据可以采用分布式数字波束扫描方法获取,通过单脉冲测角和交叉定位等方式完成电磁数据处理,通过电磁数值计算方法和传播模型完成电磁计算反演,将生成的电磁态势数据通过可视化映射、绘制和显示最终完成电磁成像。随着技术的飞速发展,在实际实现中可以采用更先进的技术完成整个电磁成像过程。

2.3电磁信息感知

电磁信息感知利用分布式天线阵进行电磁波的接收,构建双阵、多阵以及外辐射源等多种接收样式,通过信号转换和数模变换得到电磁信息,实现对空间电磁频谱分布的感知。通过对阵列天线各阵元输出进行加权求和,使天线阵列波束指向特定的方向,从而获得满足需求的期望波束。

对于感知到的电磁信息需要进行特征提取,脉内特征是雷达辐射源信号最具特色的参数之一,且具有良好的稳定性.根据调制方式的不同,脉内特征参数提取可分为脉内有意调制特征参数提取和脉内无意调制特征参数提取:1)脉内有意调制特征主要指为提高雷达性能或实现特定的功能而在雷达信号波形中加入人为的调制方式,通过合理的特征提取算法对这些调制方式特有的脉内调制规律或时不变特征提取所需的特征参数,提取方法主要集中在Winger-Ville分布(WVD)特征参数提取技术、短时傅里叶变化(STFT)、小波变化特征参数提取技术;2)脉内无意调制特征是因雷达电路和器件的不同而附加在雷达信号上的某种特性(即指纹特征或个体特征),是一部雷达特有的属性,可用于辐射源个体识别。

2.4辐射源测向定位

测向定位的基本原理如下:在接收到阵列天线各阵元的输出信号以后,先使用波束形成器形成多个交叉波束,然后对每个波束的输出信号进行功率估值,最后对输出的各个功率值使用适应于波束的比幅测向算法进行方向估计,即可得到信号的来波方向。

对于同一个输入信号,各波束的输出信号中总有一对相邻波束输出最大信号和次大信号,对这两个信号应用比幅测向算法即可获得信号的来波方向。对辐射源目标可以采用双站测向定位方式就可以实现。

2.5电磁场反演计算

电磁场反演计算是通过麦克斯韦公式计算媒质交互的数学方程,首先根据电磁时域、频域以及空域等数据结合战场地形和台站信息进行反演,实现辐射源参数反演与辐射源识别;然后对连续结果采样,得到空间若干离散点及位置信息和对应的频率、强度、方向等属性。根据电磁场交互、散射模型,采用数值计算方法离散到空间分布点,计算出各点的场强值、方向角等标量或矢量信息,计算出某场源在一连续时间段内,在离散空间点的标量和矢量数据。

传统的电磁场反演计算方法分为三类:(1)电磁传播经验模型;(2)以抛物线方程、矩量法、FDTD为代表的数值计算方法;(3)以高级传播模型APM为代表的混合传播模型。目前也有学者采用神经网络等方法进行计算。

图4电磁场反演计算方法

若在空间某位置处存在多个辐射源,需要在某位置形成的场强需要进行矢量叠加合成计算,形成综合场强,根据辐射源个数、传播衰减模型、空间分布位置、本身属性参数,用数值求解的方法计算出离散单元处的合成场强值,将电磁空间离散化,得到电磁态势体数据场。

2.6电磁场可视化

科学可视化方法主要分为两类:面绘制方法与体绘制方法。面绘制方法需要根据三维数据场构造出几何图元,然后再行渲染绘制。等值面提取技术是最常用的面绘制方法之一,它可以将原始数据场中某个属性值抽取特定大小范围的轮廓,进而构造三角形网格。体绘制方法则不用构造中间的几何图元,而是直接由三维数据场,根据数据映射关系生成二维图像。现采用MC(Marching Cubes)方法绘制等值面,对三维电磁环境进行可视化展示。经过解析与可视化映射生成空间电磁环境可视化结构,并对可视化结构进行绘制与渲染,以电磁场强分布态势、电磁等值线、电磁波传播路径等来表现环境中的电磁分布情况,还可根据已显示的图像与系统进行交互,对渲染图像可进行缩放、旋转、平移等操作,从多角度观察电磁场分布情况。

为了实现全频谱的态势展现,提出了基于HSL颜色空间的电磁态势可视化方法。颜色:用来表征电磁场的频段,0到360度的标准色轮与电磁场的不同频段进行对应,采用不同的颜色进行显示;亮度:表征电磁场的能量,能量越大越亮,能量越小越暗。将人类可见光的频段(380nm-780nm的波长范围),压缩显示电磁波的频段(如1cm-10km的波长范围)。

图5电磁场展示方法

颜色用来区分颜色特性,不同颜色对应不同的电波波长,色调就描述了不同电磁波长的颜色;在0到360度的标准色轮上,按位置度量色调;通常情况下,色调用颜色的名称标识的,例如红色、黄色、蓝色等。

亮度是颜色的相对明暗程度,通常用从0(黑)到1(白)的百分比来度量;亮度与物体的反射率成正比,如果无彩色就只有亮度一维量的变化。对彩色来说,颜色中掺入白色越多就越明亮,掺入黑色越多亮度就越小。

3、电磁成像效果

对某区域中的电磁环境进行电磁成像,形成效果如图6所示。

图6电磁成像效果图

参数的选取如下:

频段:100MHz到18GHz;

辐射源类型:雷达、通信、干扰等;

干扰方式:瞄准干扰、阻塞干扰等;

频率对应:红色-18GHz,橙色-8GHz,黄色-4GHz,绿色-1GHz,青色-500MHz,蓝色-100MHz。

4、结束语

基于电磁反演计算的超宽带无源电磁成像系统可以完成空间精确测向与定位,通过反演计算重构电磁场,能实现大范围超宽带的电磁态势展现。就像眼睛能观测到空间中的可见光一样,让机器长出“电磁眼”,从而使机器对空间电磁信号进行观测和感知,并将感知的电磁环境形成图形影像,展现出电磁场的场量分布和频域信息等电磁本质特征,可以让用户从全新视角观察到环境中的电磁态势变化,从更多维度了解到某个区域内的态势情况,在未来的陆军、空军、海军编队中,均需要借助计算电磁成像的支持才能真正打赢在信息系统下的信息化战争,并将在无线通信等民用领域中有更加广阔的应用前景。

欢迎射频微波雷达通信工程师关注公众号

关键词:

«上一篇:市场监管总局划定汛期维护市场价格稳定“红线” »下一篇: 最后一页